Bring ideas to life VIA University College

DES M1 Design of Energy Systems

Refrigerants properties Regulation / Natural refrigerants

Find data for refrigerants

	R134a	R404a	R717	R744	
Type/name	HFC	HFC	Ammonia Natural	CO2 Natural	
Critical point (°C)	100,95	71	132.2	31	
Normal temperature range (°C)	´-28/90	-47/50	-40/120	-30/120	
Specific latent heat (KJ/kg) for evaporation at -10 °C	204	180	1249	445	
Pressure (Bar) at 40 °C and -10 °C	10/2	18/4.5	15.4/2.9	26/100	
COP, 40/-10 °C (η=1)	4.03	3.2	4.29	3.31 (25C)	
Safety issues	-	Explosion	Flammable(the oretic) and toxic	-	
Environmental issues: GWP/ODP	1430/0	3922/0	~0/0	1/0	

	R22	R134a	R404A	R600a	R717	R744
Type/name	HCFC Freon22	HFC	HFC	HC Isopro- pane	Natural Ammonia	Natural CO ₂
Critical point (°C)	96	101	72.1	135	132	31
Normal temperature range (°C)	-20 to 90	-25 to 95	-5 to 60	-10 to 130	-35 to 130	-20 to 30 Transcritic al: 35
Specific latent heat (KJ/kg) for evaporation at -10 °C	212	205	176	364	1300	259
Pressure (Bar) at 40 °C and -10 °C	15/3.5	10/2.0	18/4.3	5.3/1.1	15/2-9	26/(90)
COP, 40/-10 °C (η=0,75)	3.08	3.02	3.5	3.09	3.22	
Safety issues				Flammable	Flammable toxic, corrosive	Toxic
Environmental issues: GWP/ODP	1810/ 0.055	1300/ 0	3260/ 0	3/ 0	0/ 0	1/ 0

The ideal refrigerant, 1

- 1. Best possible COP
- 2. Price and service costs, leakage??
- 3. Highest possible latent heat pr. kg circulated refrigerant
- 4. Suitable evap/condensing pressure and low discharge temperatur
- 5. Chemically stable
- 6. Not aggressive towards the materials used in the refrigeration system
- Not react with oil
- Critical pressure must be well beyond the calculated condensing pressure

The ideal refrigerant, 2

- 9. Not be flammable
- 10. Available at reasonable costs
- 11. Easy to spot leakages
- 12. Compressible at low energy consumption
- 13. Not freeze at the evaporating working temperatures
- 14. Not be harmful to people and environment
- 15. Low GWP and no ODP (Political issues)

Refrigerants Required physical proporties(1)

High latent heat for evaporization

- high \triangleright high q_0 \triangleright low q_{mR}

Specific volumetric capacity q_0/V

high ► smaller compressor

Vapour pressurer

higher than P_{atm} ➤ avoid leakage into system of air and moisture

Condensation pressure

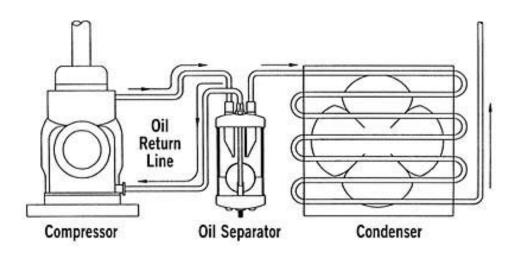
- low ► reduce wall thickness in pipes (!! To a certain extent)
- below critical point (except for R744)

Refrigerants Required physical propoties(2)

Pressure ratio

low ► low energy consumption

Freezing point


Significantly lower than t₀

Dynamic viscosity

low ► reduce pressure drop in liquid pipes

Refrigerants Oil solubilty in refrigrant

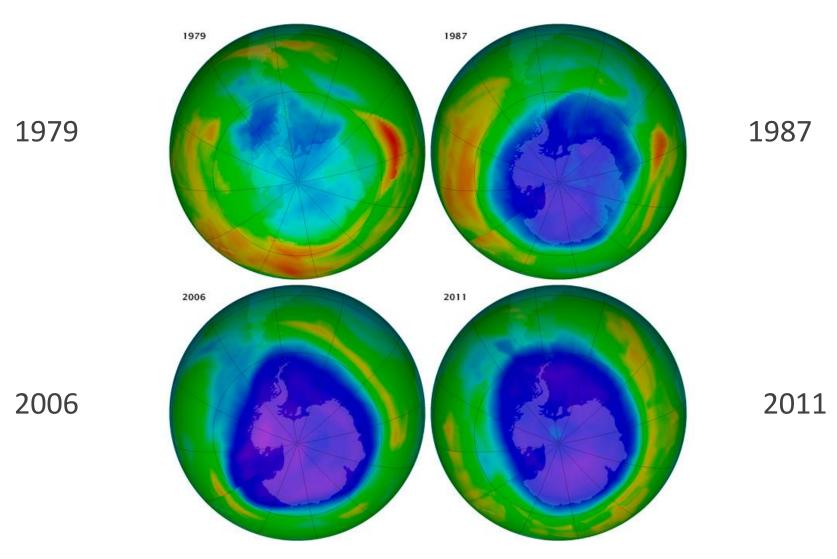
- Oil absorb refrigerant and thus reduce the viscosity, which affects the lubrication of the compressors
- Can reduce heat transmission in heat exchangers
- Low solubility is preferred(Yes and no)

Refrigerants Water solubilty in refrigrant

- Water in refrigerant can freeze or cause corrosion
- Water in refrigerant plant must be avoided at all costs, blocks up valves and potential filters and get stuck in evaporators

Refrigerants Health & Safety

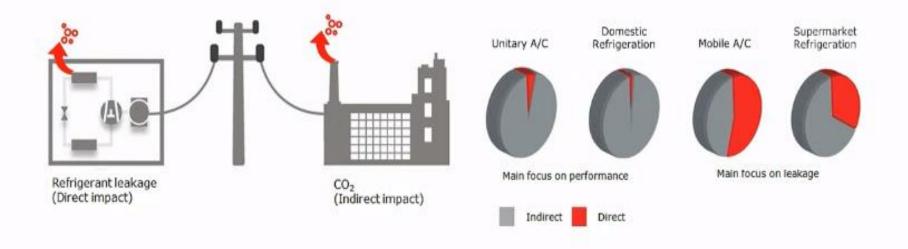
- Toxic
- Corrosion
- Panic reactions (smell, mainly R717)
- Safety precautions


Refrigerants Flameable refrigerants

- HC refrigerants: Propane (R290), Isobutane (R600a), Propylene (R1270)
- Safety precautions
- Small quantity of refrigerant
- Chillers (in combination with seconday refrigerant)

R12, R11, "Freon" Meets all technical demands, but have very negative impact on environment 7 September 2014

Environmental impact Ozone hole



Refrigerants and environment

TEWI = Direct Emission + Indirect Emission

- TEWI (Total Equivalent Warming Impact) is one of the most important ways to quantify emissions
- · Minimising TEWI will reduce global warming

- Different types of applications have different composition of TEWI
- Supermarkets are one of the most critical direct emission sources

Proporties for carbon chain based refrigerants

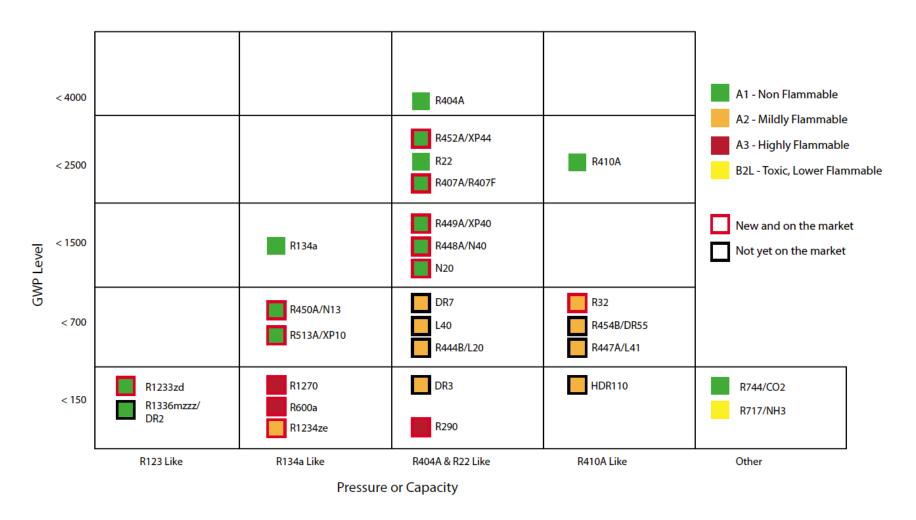
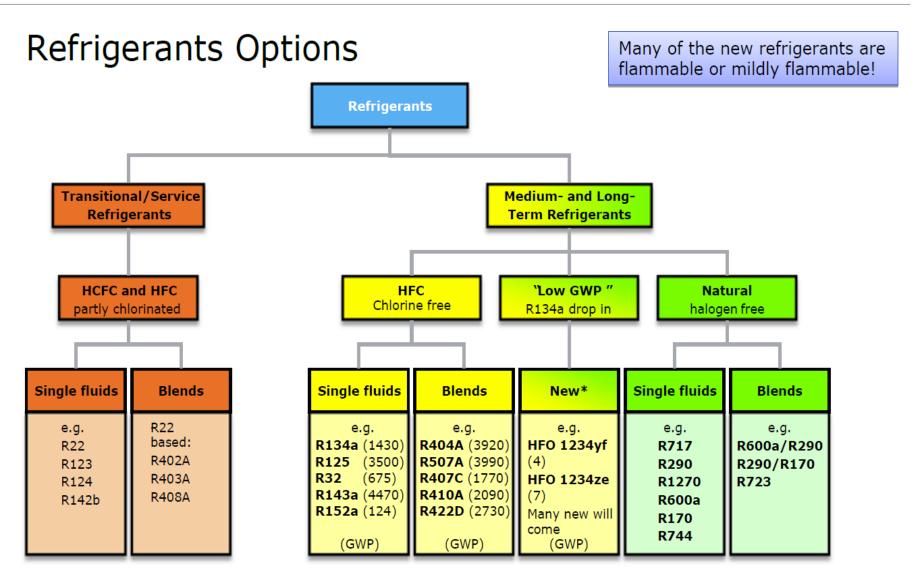
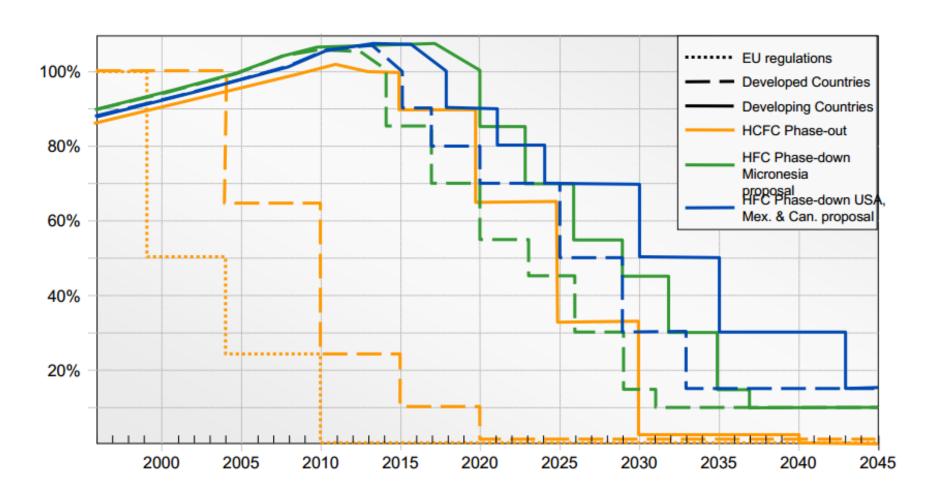
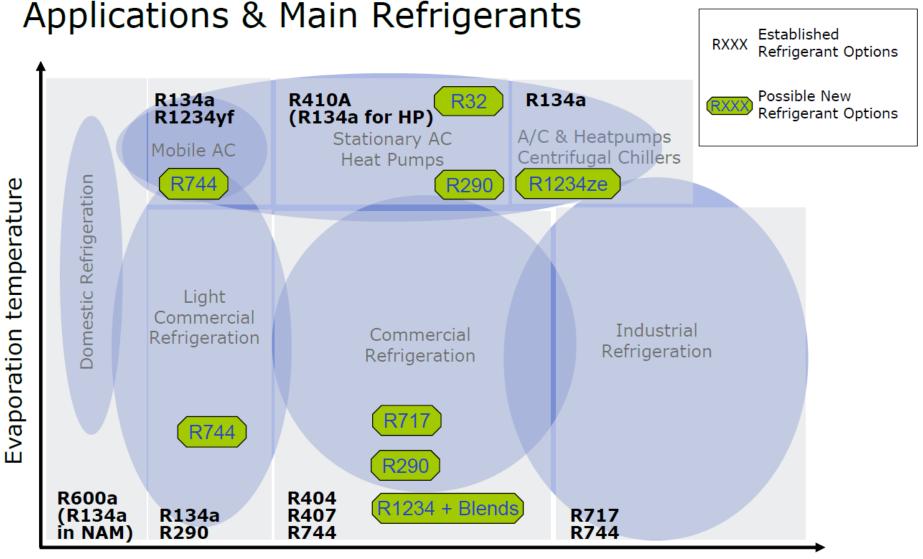



Figure 7: Carbon Chain Based Refrigerants (HCs, HFCs, HCFCs)



The choice of the refrigerant has an impact on the (energetic) systems performance and reliability (GWP in brackets)



Regulatory – Phase-down/out Schedules and Proposals

Conclusion: HFCs are under pressure (The question is when?)

Cooling capacity

Natural refrigerants

CO₂, R744

Ammonia, R717

Natural refrigerants

Annex 1. Refrigeration properties

Natural refrigerants

Refrigerant	R22	R134a	R404A	R410A	R717 (NH₃)	R744 (CO₂)	R290 (propane)
Efficiency	<u>U</u>	<u>U</u>	•	<u>U</u>	<u>u</u>	*/**	<u>U</u>
Safety	<u>u</u>	<u>u</u>	<u>u</u>	<u>u</u>		<u>U</u>	
Environment (ODP, GWP)					<u>u</u>	<u>u</u>	U
Pressure & temperature	<u>U</u>	<u>U</u>	<u>U</u>	<u></u>	<u>u</u>	<u> </u>	<u>U</u>
Chemical properties		<u>U</u>	<u>U</u>	<u>u</u>		<u></u>	<u>U</u>
Economic aspects	<u> </u>	<u>U</u> / <u>U</u> ***	U / U ***	U / U ***		<u></u>	•
Availability	<u>u</u> / <u>u</u>	<u>U</u>	U	<u>U</u>	<u>u</u>	<u>U</u>	<u>U</u>
Typical applications	All	light commercial, commercial, A/C	commercial	commercial, heat pumps, A/C	commercial & industrial refrig- eration	light commercial, commercial, in- dustrial, transport, HP	domestic, light commercial, commercial, heat pumps

^{*} Some refrigeration applications

^{**} Heat pumps, secondary media, and some refrigeration applications

^{***} Higher taxes (Nordic countries)

If you want to learn more: Refrigerants from a Danfoss Perspective

https://www.youtube.com/watch?v=B7AvCE9FAX4 https://www.youtube.com/watch?v=I2otsot38FM https://www.youtube.com/watch?v=T8fsESff4Gk https://www.youtube.com/watch?v=T8fsESff4Gk https://www.youtube.com/watch?v=ko9gfcCaluk